Answer:
Stars are born within the clouds of dust and scattered throughout most galaxies. Deep within these clouds, turbulence creates knots with enough mass to cause the gas and dust to collapse under its own gravitational force.
Weight equals mass times gravitational acceleration=400N, so mass=400/9.8=41kg approx.
Answer:
The ball thrown downward
Explanation:
When the ball is thrown vertically, the acceleration of it is the gravity acceleration independent if it is thrown downward or upward. However, the acceleration is a vector, so, when the ball is thrown upward, the movement is against the gravity, so the acceleration is negative, and so, the velocity decreases during time; and when the ball is thrown downward, the movement goes to the gravity, so the acceleration is positive, so the velocity increase after time passes.
Answer:
The distance will be x = 41.7 [m]
Explanation:
We must first find the components in the x & y axes of the initial velocity.
![(v_{o})_{x} = 15*cos(20)= 14.09[m/s]\\(v_{o})_{y} = 15*sin(20)= 5.13[m/s]](https://tex.z-dn.net/?f=%28v_%7Bo%7D%29_%7Bx%7D%20%3D%2015%2Acos%2820%29%3D%2014.09%5Bm%2Fs%5D%5C%5C%28v_%7Bo%7D%29_%7By%7D%20%3D%2015%2Asin%2820%29%3D%205.13%5Bm%2Fs%5D)
The acceleration is the gravity acceleration therefore.
g = 9.81 [m/s^2]
Now we can calculate how long it takes to fall.
![y=(v_{o})_{y}*t-0.5*g*t^2\\-28 = 5.13*t-0.5*9.81*t^2\\-28=-4.905*t^2+5.13*t\\4.905*t^2-5.13*t=28\\t = 2.96[s]](https://tex.z-dn.net/?f=y%3D%28v_%7Bo%7D%29_%7By%7D%2At-0.5%2Ag%2At%5E2%5C%5C-28%20%3D%205.13%2At-0.5%2A9.81%2At%5E2%5C%5C-28%3D-4.905%2At%5E2%2B5.13%2At%5C%5C4.905%2At%5E2-5.13%2At%3D28%5C%5Ct%20%3D%202.96%5Bs%5D)
With this time we can find the horizontal distance that runs the projectile.
![x=(v_{o})_{x}*t\\x=14.09*2.96\\x=41.7[m]](https://tex.z-dn.net/?f=x%3D%28v_%7Bo%7D%29_%7Bx%7D%2At%5C%5Cx%3D14.09%2A2.96%5C%5Cx%3D41.7%5Bm%5D)