Answer:
C) W = - 190 J
Explanation:
Notation
Wf = work done by the friction force (unknown)
Ff = force of the friction
d = distance travelled by the box = (2 pi 1.82 m) = 11.435 m
 
        
                    
             
        
        
        
Answer:
The acceleration is in 2 D as in between east and south. 
Explanation:
mass, m = 50 kg 
acceleration, a = 0.25 m/s^2 horizontal
acceleration of elevator, a' = 1 m/s^2 downwards
When a person on the ground the resultant acceleration of the person with respect to the ground is between east and south direction so the path os parabolic in nature. It graph is shown below: 
 
        
             
        
        
        
Answer:
(C). The line integral of the magnetic field around a closed loop
Explanation:
Faraday's law states that induced emf is directly proportional to the time rate of change of magnetic flux.
This can be written mathematically as;

 is the rate of change of the magnetic flux through a surface bounded by the loop.
 is the rate of change of the magnetic flux through a surface bounded by the loop.
ΔФ = BA
where;
ΔФ is change in flux
B is the magnetic field
A is the area of the loop
Thus, according to Faraday's law of electric generators
∫BdL =  = EMF
 = EMF
Therefore, the line integral of the magnetic field around a closed loop is equal to the negative of the rate of change of the magnetic flux through the area enclosed by the loop.
The correct option is "C"
(C). The line integral of the magnetic field around a closed loop
 
        
             
        
        
        
Answer: The pressure from the air and force of who or what used effort to make it move. For example you roll a ball it doesn't stop unless it runs out of the force which in this case would be energy.
Explanation:
Knowledge
 
        
             
        
        
        
Answer:
T2=336K
Explanation:
Clausius-Clapeyron equation is used to determine the vapour pressure at different temperatures:
where:
In(P2/P1) = ΔvapH/R(1/T1 - 1/T2)
p1 and p2 are the vapour pressures at temperatures 
T1 and T2
ΔvapH = the enthalpy  of vaporization of the liquid
R = the Universal Gas Constant
p1=p1, T1=307K
p2=3.50p1; T2=?
ΔvapH=37.51kJ/mol=37510J/mol
R=8.314J.K^-1moL^-1
In(3.50P1/P1)= (37510J/mol)/(8.314J.K^-1)*(1/307 - 1/T2)
P1 and P1 cancelled out:
In(3.50)=4511.667(T2 - 307/307T2)
1.253=14.696(T2 - 307/T2)
1.253=(14.696T2) - (14.696*307)/T2
1.253T2=14.696T2 - 4511.672
Therefore, 
4511.672=14.696T2 - 1.253T2
4511.672=13.443T2
So therefore, T2=4511.672/13.443=335.61
Approximately, T2=336K