First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
Current = (voltage) / (resistance)
= (1.5 V) / (0.35 ohms)
= 4.28 Amperes.
==> The battery will not last long.
==> The ammeter is broken ... it's reading less than 0.25 Amps.
Answer:
Let the second medium be air (n₁=1)
The refractive index n₂ of the medium where first medium is air is found (a)
(a) n₂ = 2
Explanation:
Critical angle can be defined as the angle of incidence that provides the angle of refraction of 90°.
Refractive index of a medium can be defined as a number that describes that how fast a light will travel through that medium.
Critical angle and Refractive index are related by:


To find refractive index of medium with respect to air, substitute n₁=1 (Refractive index of air is 1)
Also θ(critical)=30°
Find n₂ :

Answer
when there are ten they don't grow so well but when there is less than 10 they tend to grow
Answer:
a. Acceleration, a = 1.88 m/s²
b. Time, t = 7.87 seconds.
Explanation:
Given the following data;
Initial velocity, U = 14.5m/s
Final velocity, V = 29.3m/s
Distance, S = 172m
a. To find the acceleration of the speedboat;
We would use the third equation of motion;
V² = U² + 2aS
Substituting into the formula
29.3² = 14.5² + 2a*172
858.49 = 210.25 + 344a
344a = 858.49 - 210.25
344a = 648.24
a = 648.24/344
Acceleration, a = 1.88 m/s²
b. To find the time;
We would use the first equation of motion;
V = U + at
29.3 = 14.5 + 1.88t
1.88t = 29.3 - 14.5
1.88t = 14.8
Time, t = 14.8/1.88
Time, t = 7.87 seconds.