Answer:
8.0 N
Explanation:
Force: This can be defined as the mass of a body and its acceleration. The S.I unit of Force is Newton (N).
Mathematically, Fore is expressed as
F = ma ........................... equation 1
Where F = force, m = mass, a = acceleration.
and
I = mΔv
Δv = I/m ............................ Equation 2
Where I = impulse, m = mass, Δv = change in velocity
Given: I = 6.0 Newton-seconds, m = 0.1 kilogram.
Substituting into equation 2
Δv = 6.0/0.1
Δv = 60 m/s.
But
a = Δv/t
where t = time = 0.75 seconds.
a = 60/0.75
a = 80 m/s²
Substitute the values of a and m into equation 1.
F = 0.1(80)
F = 8.0 N.
Thus the average force produced = 8.0 N
Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )
<span>This spectrometer reading shows some red, blue, and purple. Our atom is most likely Hydrogen source.
This spectrometer reading shows some reds, orange, and yellow. Our atom is most likely Neon source.
This spectrometer reading shows some red, yellow, and blue. Our atom is most likely Helium source.
This spectrometer reading shows some yellow, blue, and purple. Our atom is most likely Mercury source</span>


<u />



It takes 20347.4098071s for light from the sun to reach Pluto.
The 6.1*10^9 is replaced by 6.1*10^12 on line 4 because we convert the distance from km to m.
c = speed of light. If a different value was given in the previous question then use that instead of the value I used to do the final calculation.
Explanation:
It is given that, the position of a particle as as function of time t is given by :

Let v is the velocity of the particle. Velocity of an object is given by :

![v=\dfrac{d[(8t+9)i+(2t^2-8)j+6tk]}{dt}](https://tex.z-dn.net/?f=v%3D%5Cdfrac%7Bd%5B%288t%2B9%29i%2B%282t%5E2-8%29j%2B6tk%5D%7D%7Bdt%7D)

So, the above equation is the velocity vector.
Let a is the acceleration of the particle. Acceleration of an object is given by :

![a=\dfrac{d[8i+4tj+6k]}{dt}](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Bd%5B8i%2B4tj%2B6k%5D%7D%7Bdt%7D)

At t = 0, 

Hence, this is the required solution.