Answer: 5.72 x 10-3Ω
Explanation:
Hi, to answer this question, first we have to calculate the cross sectional area of the cable:
Diameter (D)=6.07 mm
Since: 1000mm = 1m
6.07mm/ 1000mm/m = 0.00607 meters
Area of a circle : π (d/2)^2
A = π (0.00607/2)^2= 0.000028937 m2
Resistance formula:
Resistance (R) = P(resistivity) L (length)÷A (cross sectional area )
Replacing with the values given:
R = (2.82x10-8 x 5.87) / 0.000028937
R = 5.72 x 10-3Ω
Feel free to ask for more if needed or if you did not understand something.
Answer:
2. mechanical weathering can produce smaller pieces of rock that have more surface area for chemical weathering to work Explanation:
Mechanical weathering involves activities of living organisms or some geological processes. The bigger rocks are usually reduced to smaller rocks and further reduction might be limited or not posibble mechanically. This reduced rocks now increases the surface area available for chemical weathering; which further reduces the sizes of the rocks below the size range of mechanical weathering. one will recall that the rate of chemical reaction increases with exposed surface area.
No. Oxygen( an atmosphere to contain the oxygen),water ,sunlight(energy)
Answer: 3.63 km/s
Explanation:
The escape velocity equation for a craft launched from the Earth surface is:
Where:
is the escape velocity
is the Universal Gravitational constant
is the mass of the Earth
is the Earth's radius
However, in this situation the craft would be launched at a height
over the Eart's surface with a space elevator. Hence, we have to add this height to the equation:
Finally:
Answer:
85.8 m/s
Explanation:
We know that the length of the circular path, L the plane travels is
L = rθ where r = radius of path and θ = angle covered
Now,its speed , v = dL/dt = drθ/dt = rdθ/dt + θdr/dt
where dθ/dt = ω = angular speed = v'/r where v' = maximum speed of plane and r = radius of circular path
Now, from θ = θ₀ + ωt where θ₀ = 0 rad, ω = angular speed and t = time,
θ = θ₀ + ωt = 0 + ωt = ωt
So, v = rdθ/dt + θdr/dt
v = rω + ωtdr/dt
v = (r + tdr/dt)ω
v = (r + tdr/dt)v'/r
v = v' + tv'/r(dr/dt)
v = v'[1 + t(dr/dt)/r]
Given that v' = 110 m/s, t = 33.0s, r = 120 m and dr/dt = rate at which line is shortened = -0.80 m/s (negative since it is decreasing)
So, v = 110 m/s[1 + 33.0 s(-0.80 m/s)/120 m]
v = 110 m/s[1 + 11.0 s(-0.80 m/s)/40 m]
v = 110 m/s[1 + 11.0 s(-0.02/s)]
v = 110 m/s[1 - 0.22]
v = 110 m/s(0.78)
v = 85.8 m/s