Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;

k = 1.4

Work done is given as;

inlet velocity is negligible;

Therefore, the exit velocity is 629.41 m/s
Because they both have to do with chemistry
The basketball would be sun then baseball earth and finally golf ball moon.
Answer:
A
Explanation:
In 5 minutes, they went 10 miles at both 2, 3, and 4 checkpoints. The bus then starts to speed up.
Hope this helps!
The acceleration due to gravity at the Earth's surface is 9.8 m/s/s
<span>So a 2 kg object will accelerate at 9.8 m/s/s if it is dropped..... actually all dropped objects will accelerate at the same rate. </span>
<span>The force of gravity on the object is given by Newton's 2nd Law </span>
<span>F = m . a </span>
<span>F = 2 . 9.8 = 19.6 N </span>
<span>Now go to Mars , with a lower gravitational field strength. It only accelerates falling objects at 3.71 m/s/s </span>
<span>So the force of gravity on the object is F = 2 . 3.71 = 7.42 N </span>
<span>But the answer is (2) 2 kg, because the mass of the object stays the same and that is what you are asked for. </span>
<span>Someone was trying to be tricky.</span>