Answer:
0.5 < t < 2
Step-by-step explanation:
The function reaches its maximum height at ...
t = -b/(2a) = -16/(2(-16)) = 1/2 . . . . . . where a=-16, b=16, c=32 are the coefficients of f(t)
The function can be factored to find the zeros.
f(t) = -16(t^2 -1 -2) = -16(t -2)(t +1)
The factors are zero for ...
x = -1 and x = +2
The ball is falling from its maximum height during the period (0.5, 2), so that is a reasonable domain if you're only interested in the period when the ball is falling.

<u>We </u><u>have</u><u>, </u>
- Line segment AB
- The coordinates of the midpoint of line segment AB is ( -8 , 8 )
- Coordinates of one of the end point of the line segment is (-2,20)
Let the coordinates of the end point of the line segment AB be ( x1 , y1 ) and (x2 , y2)
<u>Also</u><u>, </u>
Let the coordinates of midpoint of the line segment AB be ( x, y)
<u>We </u><u>know </u><u>that</u><u>, </u>
For finding the midpoints of line segment we use formula :-

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
- The coordinates of midpoint and one of the end point of line segment AB are ( -8,8) and (-2,-20) .
<u>For </u><u>x </u><u>coordinates </u><u>:</u><u>-</u>





<h3><u>Now</u><u>, </u></h3>
<u>For </u><u>y </u><u>coordinates </u><u>:</u><u>-</u>





Thus, The coordinates of another end points of line segment AB is ( -14 , 36)
Hence, Option A is correct answer
Answer:
y=4x-17
Step-by-step explanation: Distribute the 4(x-5)
4x-20
Then add three to both sides
y=4x-17
The number of variables in the problem is 3