Angle 4 would also be 135. the two on the top would add to 180, making a whole circle altogether that equals 360. so, you would do 180-135 = 45. angle 5 is 45. angle 7 would also be 135 because angle 4 and 7 are vertical angles.
Answer:
Domain = {All real values of x EXCEPT x = -5 and x = 7}
Step-by-step explanation:
This is a rational function given as y=\frac{6+9x}{6-|x-1|}y=
6−∣x−1∣
6+9x
The domain is the set of all real value of x for which the function is defined.
For rational functions, we need to find which value of x makes the denominator equal to 0. We need to exclude those values from the domain.
Now
6 - |x-1| = 0
|x-1| = 6
x- 1 = 6
or
-(x-1) = 6
x = 6+1 = 7
and
-x+1=6
x = 1-6 = -5
So, the x values of -5 and 7 makes this function undefined. So the domain is the set of all real numbers except x = -5 and x = 7
Answer: don't know sorry
Step-by-step explanation:
Its 36 because 6x2 is 12 and 12 x 3 equals 36
The solution is 
<em><u>Solution:</u></em>
Let us assume,

<em><u>Given system of equations are:</u></em>


<em><u>Rewrite the equation using "a" and "b"</u></em>
2a - 3b = -5 ------------ eqn 1
4a + 6b = 14 -------------- eqn 2
<em><u>Let us solve eqn 1 and eqn 2</u></em>
<em><u>Multiply eqn 1 by 2</u></em>
2(2a - 3b = -5)
4a - 6b = -10 ------------- eqn 3
<em><u>Add eqn 2 and eqn 3</u></em>
4a + 6b = 14
4a - 6b = -10
( - ) --------------------
8a = 4

Substitute a = 1/2 in eqn 1

Now let us go back to our assumed values
Substitute a = 1/2 in assumed values

Substitute b = 2 in assumed value

Thus the solution is 