Answer:
The equilibrium constant for CO now
= 0.212 M
For H₂O
= 0.212 M
For CO₂ = x = 0.2880 M
For H₂ = x = 0.2880 M
Explanation:
The chemical equation for the reaction is:
CO(g) + H2O(g) ⇌ CO2(g) + H2(g)
The ICE Table for this reaction can be represented as follows:
CO(g) + H2O(g) ⇌ CO2(g) + H2(g)
Initial 0.5 0.5 - -
Change -x -x + x + x
Equilibrium 0.5 -x 0.5 - x
The equilibrium constant![K_c = \dfrac{[x][x]}{[0.5-x][0.5-x]}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cdfrac%7B%5Bx%5D%5Bx%5D%7D%7B%5B0.5-x%5D%5B0.5-x%5D%7D)
![K_c = \dfrac{[x]^2}{[0.5-x]^2}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cdfrac%7B%5Bx%5D%5E2%7D%7B%5B0.5-x%5D%5E2%7D)
where; 



1.3583 (0.5-x) = x
0.67915 - 1.3583x = x
0.67915 = x + 1.3583x
0.67915 = 2.3583x
x = 0.67915/2.3583
x = 0.2880
The equilibrium constant for CO now = 0.5 - x
= 0.5 - 0.2880
= 0.212 M
For H₂O = 0.5 - x
= 0.5 - 0.2880
= 0.212 M
For CO₂ = x = 0.2880 M
For H₂ = x = 0.2880 M
Rockkkkkkkkkkkkkkkkskskskksks
.90 dL is 90 mL because 1 dL is 100 mL
Answer:
The answer is Graph A, because there is a direct relationship between pressure and volume.
The volume of a given gas sample is directly proportional to its absolute temperature at constant pressure.
To calculate the amount of the compound in the units of grams, we need to first obtain for the molar mass of the compound. We calculate as follows:
MgCl2 = <span>24.31 + (2 x 35.45) = 95.21 g/mol
</span><span>340 g MgCl2 ( 1 mol / 95.21 g ) = 3.57 mol MgCl2
Hope this answers the question. Have a nice day.</span>