Explanation:
Step one look for the longest chain of carbon atoms
Longest chain is 7 C atoms
Step 2 look for double bonds or others functional groups
it is present in 3rd carbon
Therefore IUPAC name is 3-heptene
From point of stereochemistry it can also be written as trans-3-heptene as the hydrogens are placed in opposite side of the C=C bond.
Hope this helps...
Answer:
B:GRANITE
Explanation:
<em>Granite is typical of a larger family of granitic rocks that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals.</em>
<em>Granite is typical of a larger family of granitic rocks that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals.Granite is nearly always massive (lacking any internal structures), hard, and tough. These properties have made granite a widespread construction stone throughout human history.</em>
sana tama
1.Decomposition i think
2.boiling
3.It is a solid at room temperature and pressure.
4.<span>The base donates a hydrogen ion.
5.That causes the oxidation of another element
6.</span>MnO2
7.When a substance is reduced, electrons are lost.
8.True I think
9.False
10.True
Hope these are correct
Answer:
Q = 96.6 j
Explanation:
Given data:
Heat required = ?
Initial temperature = 19°C
Final temperature = 33°C
Mass of disc = 3.0 g
Specific heat capacity = 2.3 J/g.°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 19°C
ΔT = 14°C
Q = 3.0 g×2.3 J/g.°C × 14°C
Q = 96.6 j