Answer:
the answer iissss.....5x-15
Answer:
The area would be 314.16 mm squared
<u>Given</u>:
The length of DE is 8 cm and the measure of ∠ADE is 60°.
We need to determine the surface area of the pyramid.
<u>Length of AD:</u>
The length of AD is given by


Length of AD = 8 cm
<u>Slant height:</u>
The slant height EF can be determined using the trigonometric ratio.
Thus, we have;




Thus, the slant height EF is 4√3
<u>Surface area of the square pyramid:</u>
The surface area of the square pyramid can be determined using the formula,

Substituting the values, we have;




The exact form of the area of the square pyramid is 
Substituting √3 = 1.732 in the above expression, we have;


Rounding off to one decimal place, we get;

Thus, the area of the square pyramid is 174.8 cm²
Answer:
Step-by-step explanation:
<u>Given equation:</u>
<u>q is independent variable, we need to solve it for s:</u>
- 6q = 3s - 9
- 3s = 6q + 9
- s = 2q + 3
<u>Correct choice is </u>
{{{ THE BOLDED CHARACTERS SHOULD BE SMALL. }}}
SEQUENCE: 6, 18, 54, 162
18/6 = 3
54/18 = 3
162/54 = 3
then, r (common ratio) = 3
_________________________________________
RECURSIVE RULE: r = 3
an = a(n - 1) × r [formula]
ANSWER: an = a(n - 1) × 3
_________________________________________
ITERIATIVE RULE: r = 3, a1 = 6
an = a1 × r^(n - 1) [formula] [ ^(n-1) is an exponent]
ANSWER: an = 6 × 3^(n - 1)