Answer:
16.63min
Explanation:
The question is about the period of the comet in its orbit.
To find the period you can use one of the Kepler's law:

T: period
G: Cavendish constant = 6.67*10^-11 Nm^2 kg^2
r: average distance = 1UA = 1.5*10^11m
M: mass of the sun = 1.99*10^30 kg
By replacing you obtain:

the comet takes around 16.63min
Answer:
121.3 cm^3
Explanation:
P1 = Po + 70 m water pressure (at a depth)
P2 = Po (at the surface)
T1 = 4°C = 273 + 4 = 277 K
V1 = 14 cm^3
T2 = 23 °C = 273 + 23 = 300 K
Let the volume of bubble at the surface of the lake is V2.
Density of water, d = 1000 kg/m^3
Po = atmospheric pressure = 10^5 N/m^2
P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2
Use the ideal gas equation

By substituting the values, we get

V2 = 121.3 cm^3
Thus, the volume of bubble at the surface of lake is 121.3 cm^3.
Answer:
Time = 11.60 seconds.
Explanation:
Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.
Mathematically, speed is given by the equation;

Given the following data;
Speed = 0.711m/s
Distance = 8.25m
To find the time;
Making time the subject of formula, we have;
Substituting into the equation, we have;

Time = 11.60 secs.
False, as an object falls its potential energy turns into kinetic energy thus decreasing the potential energy.