Mol sulfuric acid = 19 g * (1 mol) / (98.1 g) = 0.19367 mol
mol H2O = 0.19367 mol H2SO4 * (2 H2O) / (1 H2SO4)
= 0.387359 mol H2O
grams H2O = 0.387359 mol H2O * (18 g)/(1 mol)
= 6.97 g
The answer is 7.0 grams of water
Answer:
Explanation — This page looks at the oxidation of alcohols using acidified sodium or ... of sodium or potassium dichromate(VI) acidified with dilute sulfuric acid. ... The electron-half-equation for this reaction is as follows: ... To do that, oxygen from an oxidizing agent is represented as [O]. ... Article type: Section or Page.
Answer:
This planet rules communication, education, and commerce. Wednesdays is a day to tend the mind and care for the self. What to Wear: Mercury is represented by the color green, so wear something green on Wednesdays, be it a piece of jewelry with an emerald stone or your favorite pair of Chuck Taylors
2Metallic mercury mainly causes health effects when inhaled as a vapor where it can be absorbed through the lungs. Symptoms of prolonged and/or acute exposures include: Tremors; Emotional changes (such as mood swings, irritability, nervousness, excessive shyness)
3The four basic needs of nearly all survival situations are shelter, water, fire, and food
Answer:
1.30464 grams of glucose was present in 100.0 mL of final solution.
Explanation:

Moles of glucose = 
Volume of the solution = 100 mL = 0.1 L (1 mL = 0.001 L)
Molarity of the solution = 
A 30.0 mL sample of above glucose solution was diluted to 0.500 L:
Molarity of the solution before dilution = 
Volume of the solution taken = 
Molarity of the solution after dilution = 
Volume of the solution after dilution= 



Mass glucose are in 100.0 mL of the 0.07248 mol/L glucose solution:
Volume of solution = 100.0 mL = 0.1 L

Moles of glucose = 
Mass of 0.007248 moles of glucose :
0.007248 mol × 180 g/mol = 1.30464 grams
1.30464 grams of glucose was present in 100.0 mL of final solution.
Because water is polar and oil is nonpolar, their molecules are not
attracted to each other. The molecules of a polar solvent like water are
attracted to other polar molecules, such as those of sugar. This explains
why sugar has such a high solubility in water. Ionic compounds, such
as sodium chloride, are also highly soluble in water. Because water
molecules are polar, they interact with the sodium and chloride ions.
In general, polar solvents dissolve polar solutes, and nonpolar solvents
dissolve nonpolar solutes. This concept is often expressed as “Like
dissolves like.”
So many substances dissolve in water that it is sometimes called
the universal solvent. Water is considered to be essential for life
because it can carry just about anything the body needs to take in
or needs to get rid of.