A: rhombus and squares have four equal sides.
Good. I hope you get locked, most mainly banned. Nobody needs you, “FrIsK”
Wouldn’t it be 0, as that’s when their values are both equal to each other, making the equation true?
Answer:
B) \sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33} \div 2
Step-by-step explanation:
Step 1: First we have to get rid off the roots in the denominator.
To do that, we have to multiply the numerator and the denominator by the conjugate of √5 + √3.
The conjugate of √5 + √3 is √5 - √3.
Now multiply given expression with √5 - √3
(√6 + √11) (√5 - √3)
------------- x -----------
(√5 + √3) (√5 - √3)
Step 2: Multiply the numerators and the denominators.
√6√5 - √6√3 +√11√5 -√11√3
------------------------------------------
(√5)^2 - (√3)^2
Now let's simplify to get the answer.
√30-√18 +√55 - √33
-----------------------------
5 - 3
= √30 -3√2 +√55 [√18 = √9√2 = 3√2]
--------------------------
2
The answer is \sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33} \div 2
Thank you.