Answer:
I dont speak that
Step-by-step explanation:
Answer:
$54
Step-by-step explanation:
Since its $0.24 per 1 square inch, you would multiply 0.24 by the total amount of square inches. When we do this, we get 54 as our answer.\
Hope this helps!
Answer:
x = 0.25
Step-by-step explanation:
When logs are added together, they are actually multiplied and then the logs taken of the product.
That sentence is actually correct, but you are going to have to read it a couple of times. You might understand it if I actually just solve the problem.
ln(2x) + ln(2) = 0 Combine the two subjects to make 1 ln.
ln (2)(2x) = 0 Now take the antilog
ln(4x) = 0
antilog ln(4x) = e^0 e^0 = 1
4x = 1 See your last problem.
x = 1/4
Now the question is "What's the answer?" It might be 1/4 but I doubt it. A better choice would be x = 1/4 or x = 0.25
I'd try the last one first.
Remember that a quadratic equation is a parabola. The equation is of the type y = Ax^2 + Bx + C
A linear equation is a straight line. The equation is of the type y = MX + N
The soluction of that system is Ax^2 + Bx + C = MX + N
=> Ax^2 + (B-M)x + (C-N) = 0
That is a quadratic equation.
A quadratic equation may have 0, 1 or 2 real solutions. Those are all the possibilitis.
So you must select 0, 1 and 2.
You can also get to that conclusion if you draw a parabola and figure out now many point of it you can intersect with a straight line.
You will realize that depending of the straight line position it can intersect the parabola in none point, or one point or two points.
Answer:
225
Step-by-step explanation:
When you fill in values of n, you find the series is an arithmetic series of 15 terms with a first term of 1 and a common difference of 2. The formula for the sum of such a series can be used.
<h3>Terms</h3>
Looking at terms of the series for different values of n, we find ...
for n = 1: 2(1) -1 = 1 . . . . . the first term
for n = 2: 2(2) -1 = 3 . . . . the second term; differs by 3-1=2
for n = 15: 2(15) -1 = 29 . . . . the last of the 15 terms
<h3>Sum</h3>
The sum of the terms of an arithmetic series is the product of the average term and the number of terms. The average term is the average of the first and last terms.
Sum = (1 +29)/2 × 15 . . . . . . average term × number of terms
Sum = 15 × 15 = 225
The sum of the series is 225.
__
<em>Additional comment</em>
Based on the first term (a1), the common difference (d), and the number of terms (n), the sum can also be written ...
S = (2×a1 +d(n -1))(n/2)
For the parameters of this series, the sum is ...
S = (2(1) +2(15 -1))(15/2) = 30(15/2) = 225