A) Nitrogen has an ATOMIC mass number of 14, but nitrogen gas consists of N₂ molecules, so the mass to use in this problem is 28 g/mol. Rates of effusion ∝ 1/√(mass), so
<span>√(mass unknown) /√28 = (rate N₂ effusion)/(rate unknown effusion) = 1.59 </span>
<span>∴ mass unknown = (1.59)²(28) = 70.78 g/mol </span>
<span>B) One possible gas that comes close for this mass is NF₃.</span>
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ