<h3>Answers are:
sine, tangent, cosecant, cotangent</h3>
Explanation:
On the unit circle we have some point (x,y) such that x = cos(theta) and y = sin(theta). The sine corresponds to the y coordinate of the point on the circle. Quadrant IV is below the x axis which explains why sine is negative here, since y < 0 here.
Since sine is negative, so is cosecant as this is the reciprocal of sine
csc = 1/sin
In quadrant IV, cosine is positive as x > 0 here. So the ratio tan = sin/cos is going to be negative. We have a negative over a positive when we divide.
Because tangent is negative, so is cotangent.
The only positive functions in Q4 are cosine and secant, which is because sec = 1/cos.
It form a right triangle
legnth of ladder is hypotonuse
bottom of ladder from wall distance is one leg
distance up wall is other leg
a^2+b^2=c^2
c=hypotonuse and a and b are legs
4^2+b^2=20^2
16+b^2=400
minus 16 both sides
b^2=384
sqrt both sides
b=8√6 ft
aprox
b=19.59ft from ground
Answer:
Step-by-step explanation:

Answer:
The probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes <em>n</em> > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

Let <em>p</em> = the proportion of keypads that pass inspection at a cell phone assembly plant.
The probability that a randomly selected cell phone keypad passes the inspection is, <em>p</em> = 0.77.
A random sample of <em>n</em> = 111 keypads is analyzed.
Then the sampling distribution of
is:

Compute the probability that the proportion of passed keypads is between 0.72 and 0.80 as follows:


Thus, the probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.