The correct question is
The composite figure is made up of a triangular prism and a pyramid. The two solids have congruent bases. What is the volume of the composite figure<span>
?</span>
the complete question in the attached figure
we know that
[volume of a cone]=[area of the base]*h/3
[area of the base]=22*10/2-------> 110 units²
h=19.5 units
[volume of a cone]=[110]*19.5/3------> 715 units³
[volume of a triangular prism]=[area of the base]*h
[area of the base]=110 units²
h=25 units
[volume of a a triangular prism]=[110]*25------------> 2750 units³
[volume of a the composite figure]=[volume of a cone]+[volume of a <span>a triangular prism]
</span>[volume of a the composite figure]=[715]+[2750]-------> 3465 units³
the answer is
The volume of a the composite figure is 3465 units³
What are we exactly supposed to solve for here
Answer:
3
Step-by-step explanation:
(40/5)-7+2
PEMDAS says parentheses first, so divide inside the parentheses
(8)-7+2
Then add and subtract from left to right
1 +2
3
Answer:
c. 3a^2b^11/2
Step-by-step explanation:
The applicable rule of exponents is ...
(a^b)/(a^c) = a^(b-c)
__
