Your answer is the second option, she should choose the rectangular tiles because the total cost will be $8 less.
To find this answer we need to first find the total cost for using square tiles, and the cost for using rectangular tiles, and compare them. We can do this by finding the area of each tile individually, calculating how many tiles we would need, and multiplying this by the cost for one tile:
Square tiles:
The area of one square tile is 1/2 × 1/2 = 1/4 ft. Therefore we need 40 ÷ 1/4 = 160 tiles. If each tile costs $0.45, this means the total cost will be $0.45 × 160 = $72
Rectangular tiles:
The area of one rectangular tile is 2 × 1/4 = 2/4 = 1/2 ft. Thus we need 40 ÷ 1/2 = 80 tiles. Each tile costs $0.80, so the total cost will be 80 × $0.80 = $64.
This shows us that the rectangular tiles will be cheaper by $8.
I hope this helps! Let me know if you have any questions :)
The wall area is the product of the room perimeter and the room height:
A₁ = (2*(12.5 ft + 10.5 ft))*(8.0 ft) = 368 ft²
The window and door area together is
A₂ = 2*((4 ft)*(3 ft)) + (7 ft)*(3 ft) = 45 ft²
The area of one roll of wallpaper is
A₃ = (2.5 ft)*(30 ft) = 75 ft²
Then the number of rolls of wallpaper required will be
1.1*(A₁ - A₂)/A₃ ≈ 4.74
5 rolls of wallpaper should be purchased.
_____
As a practical matter, not much of the window and door area can be saved. The rolls are 30 inches wide, but the openings are 36 inches wide. Some will likely have to be cut from two strips. The strips will have to be the full length of the wall, and the amount cut likely cannot be used elsewhere. If the window and door area cannot be salvaged, then likely ceiling(5.4) = 6 rolls will be needed (still allowing 10% for matching and waste).
<span> x=8+4t
y=-1+8t
t = 0 x = 8 y = -1
</span>
t = 1 x = 12 y = 7
t = 2 x = 16 y = 15
I don’t really know, but it could be b or c. If none then just pick a question :D