<u>Given</u>:
Given that the length of VW is 10 cm.
The central angle is 127°
We need to determine the arc length of VR.
<u>Arc length of VR:</u>
The arc length of VR can be determined using the formula,

Substituting
and r = 10, we get;

Simplifying the terms, we get;


Rounding off to the nearest hundredth, we get;
Thus, the arc length of VR is 22.15 cm
Answer:
C ≈ 22.1°
Step-by-step explanation:
The law of cosines formula is given. Solving it for C, we find ...
C = arccos((a^2 +b^2 -c^2)/(2ab))
where a and b are the sides adjacent to the angle.
Then we have ...
C = arccos((14^2 +19^2 -8^2)/(2·14·19)) = arccos(493/532)
C ≈ 22.1°
__
If you have a fair number of these to do, a spreadsheet is a useful tool. There are also triangle solver apps on the web or your local smart platform that will do this, too.
Answer:
30
Step-by-step explanation:
Set up the proportion y=kx k equals y over x
y=2x
y=30 if x is 15
Answer:
14/42
Step-by-step explanation:
Use the keep change flip strategy or butterfly multiply
La mentalidad de crecimiento, ya que a diferencia de la mentalidad fija, nos permite ver en otras personas la mentalidad de mejorar y perseverar.