Answer:
840 cm
Explanation:
Note: A hydraulic press operate based on pascal's principle.
From pascal's principle
W₁/d₁ = W₂/d₂...................... Equation 1
Where W₁ and W₂ are the first and second weight, and d₁ and d₂ are the first and second diameter of the piston.
make d₁ the subject of the equation
d₁ = W₁×d₂/W₂................ Equation 2
Given: W₁ = 2100 kg, W₂ = 25 kg, d₂ = 10 cm = 0.1 m.
Substitute these values into equation 2
d₁ = 2100(0.1)/25
d₁ = 8.4 m
d₁ = 840 cm
Answer:
When they are connected in series
The 50 W bulb glow more than the 100 W bulb
Explanation:
From the question we are told that
The power rating of the first bulb is 
The power rating of the second bulb is 
Generally the power rating of the first bulb is mathematically represented as

Where
is the normal household voltage which is constant for both bulbs
So

substituting values

Thus the resistance of the second bulb would be evaluated as

From the above calculation we see that

This power rating of the first bulb can also be represented mathematically as

This power rating of the first bulb can also be represented mathematically as

Now given that they are connected in series which implies that the same current flow through them so

This means that

So when they are connected in series

This means that the 50 W bulb glows more than the 100 \ W bulb
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
<span>The answer is Mathias Schleiden and <span><span>Theodor Schwann</span></span></span>