Answer:
the speed limit 6 seconds and the car will travel in 90m
Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
Answer:
c)
Explanation:
A collision is said to be elastic when the total kinetic energy is the same after the collision. The speed of objects that are stuck together will always be less than the initial speed of the object that was in motion given that the other particle was at rest. It is because the kinetic energy of the system was due to the moving object. The objects have a greater overall mass when they are stuck. If the kinetic energy is the same and the mass increases, the velocity must decrease.
Answer: The pressure that one experiences on the Mount Everest will be different from the one, in a classroom. It is because pressure and height are inversely proportional to each other. This means that as we move up, the height keeps on increasing but the pressure will keep on decreasing. This is the case that will be observed when one stands on the Mount Everest as the pressure is comparatively much lower there.
It is because as we move up, the amount of air molecules keeps on decreasing but all of the air molecules are concentrated on the lower part of the atmosphere or on the earth's surface.
Thus a person in a low altitude inside a classroom will experience high pressure and a person standing on the Mount Everest will experience low pressure.
Answer:
The leaves of the electroscope move further apart.
Explanation:
This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.
Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.
So, the leaves move further apart.