Answer:
vₐ = v_c
Explanation:
To calculate the escape velocity let's use the conservation of energy
starting point. On the surface of the planet
Em₀ = K + U = ½ m v_c² - G Mm / R
final point. At a very distant point
Em_f = U = - G Mm / R₂
energy is conserved
Em₀ = Em_f
½ m v_c² - G Mm / R = - G Mm / R₂
v_c² = 2 G M (1 /R - 1 /R₂)
if we consider the speed so that it reaches an infinite position R₂ = ∞
v_c =
now indicates that the mass and radius of the planet changes slightly
M ’= M + ΔM = M (
)
R ’= R + ΔR = R (
)
we substitute
vₐ =
let's use a serial expansion
√(1 ±x) = 1 ± ½ x +…
we substitute
vₐ = v_ c (
)
we make the product and keep the terms linear
vₐ = v_c
Answer:
B - A
Explanation:
For the combination of 2 vector to due southwest, 1 vector must due south and the other vector due west. Since vector B is already due west, vector A should due south. As vector A is already due north, vector -A would due south. So the combination of B + (-A) or B - A should points southwest
Answer:
here
Explanation:
Equilibrium is a state of a system which does not change. ... An equilibrium is considered stable (for simplicity we will consider asymptotic stability only) if the system always returns to it after small disturbances. If the system moves away from the equilibrium after small disturbances, then the equilibrium is unstable.
Answer:
According to super hero logic , nothing will happen to him.
But according to science , yes he will get current shock but good news is that he wouldn't get elected until he is in contact with the wires.
He may / may not be affected but his suit will be damaged for sure as it is made of metal.
HOPE THIS HLEP AND PLSSSSS MARK AS BRAINLIEST AND THNXX :)
Answer:
Part a)
Velocity = 6.9 m/s
Part b)
Position = (3.6 m, 5.175 m)
Explanation:
Initial position of the particle is ORIGIN
also it initial speed is along +X direction given as

now the acceleration is given as

when particle reaches to its maximum x coordinate then its velocity in x direction will become zero
so we will have



Part a)
the velocity of the particle at this moment in Y direction is given as



Part b)
X coordinate of the particle at this time



Y coordinate of the particle at this time



so position is given as (3.6 m, 5.175 m)