<em>Anything</em> that's dropped through air is somewhat affected by air resistance. But, out of that list, the leaf and the balloon are the items that will be affected by air resistance enough so that you can plainly see it.
If you spend some time thinking about it, you can kind of understand why airplane wings and boat propellers are shaped more like leafs and balloons than like bricks and rocks.
Answer: The sound will change due to changes in frequency and the wavelength of the airplane.
Explanation: Let assume that the observer is at a stationary position. The wavelength of the sound from the airplane reduces and the frequency increases as the plane is moving toward the observer. As the airplane passes by, that is, moving away from the observer, the frequency starts to reduce while the wavelength of the sound starts to increase.
The sound that the observer hears will change base on the illustration above.
Frictional force and Applied force has same “magnitude” and “opposite” direction.
Option: B
<u>Explanation</u>:
When a book is moved horizontally by applying “force” on the book, the frictional force is opposed to the book by the table. Here, this “frictional force” is opposing the book has the same force what we applied on the book but this frictional force and the applied force are opposite in direction. Always the “frictional force” is opposite to the “applied force” which stops the object to move. For example, if a force applied leftward to the object the frictional force is acted on the right side of the object.
When two objects are in contact they experience a "frictional force". This "frictional force" acts opposite to the force applied on to move the object.
Formula for "frictional force" is 
Where,
is coefficient of friction and N is normal force.
Explanation:
Mass of the ball, m = 0.058 kg
Initial speed of the ball, u = 11 m/s
Final speed of the ball, v = -11 m/s (negative as it rebounds)
Time, t = 2.1 s
(a) Let F is the average force exerted on the wall. It is given by :


F = 0.607 N
(b) Area of wall, 
Let P is the average pressure on that area. It is given by :


P = 0.202 Pa
Hence, this is the required solution.
Explanation:
For an experimental result to be considered acceptable, all relevant variables involved in the experiment must be taken into account, by isolating it, performing it under controlled conditions and modifying the conditions under which it takes place. This, with the objective of excluding alternative explanations in the analisis of the experimental data. Therefore, if these steps are followed appropriately, experimental data are trustworthy. The reliability of the experiment increases when it is replicated by other researchers and the same results are obtained.