You can use the Pythagorean theorem to calculate the hypotenuse, since the resultant is the hypotenuse of the triangle.

Answer:
It would be changed or replaced when new information is presented that proves the theory needs to be reconstructed
Explanation:
Answer:
<em>The body flies off to the left at 9.1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:
![m_1v_1+m_2v_2=m_1v'_1+m_2v'_2\qquad\qquad[1]](https://tex.z-dn.net/?f=m_1v_1%2Bm_2v_2%3Dm_1v%27_1%2Bm_2v%27_2%5Cqquad%5Cqquad%5B1%5D)
Wall-E robot is initially at rest, its two parts together. His head has a mass of m1=0.75 kg and his body has a mass of m2=6.2 kg. Both parts have initial speeds of zero v1=v2=0.
After the explosion, his head flies off to the right at v1'=75 m/s. We are required to find the speed of his body v2'. Solving [1] for v2':

Substituting values:


The body flies off to the left at 9.1 m/s
Answer:
10,000kgm/s
Explanation:
Since we not told what to look for, we can as well find the momentum of the car.
momentum = mas * velocity
Given
Mass of the car = 2000kg
velocity = 5m/s
Substitute into the formula
Momentum = 2000 * 5
Momentum = 10000kgm/s
Hence the momentum of the car is 10,000kgm/s
As per Newton's II law we know that

here we know that

so here we will have

so here if we need to increase the acceleration we need to increase the applied force while on increasing the mass or on increasing the friction force the acceleration will decrease.
So here correct answer will be
<em>A) force on the object.</em>