Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.
Answer:
A. 16.9 m
Explanation:
I think this is the answer i am not sure
but hope it helps
Kepler's 3rd law is given as
P² = kA³
where
P = period, days
A = semimajor axis, AU
k = constant
Given:
P = 687 days
A = 1.52 AU
Therefore
k = P²/A³ = 687²/1.52³ = 1.3439 x 10⁵ days²/AU³
Answer: 1.3439 x 10⁵ (days²/AU³)
Answer:
unbalanced force
Explanation:
this is a guess so just look it up
Answer:
Staples, Bestbuy, Maybe Homedepot
Explanation: