Answer:
These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.
Explanation:
During upward projection the final velocity is zero, and the gravitational acceleration is -10 m/s² (against the gravity).
Therefore; using the equation;
S = 1/2gt² + ut
Where s is the height h, g is gravitational acceleration, and t is the time and u is the initial velocity u, is 16 ft/s.
Thus; h= 1/2(-10)t² + 16t
We get; h = -5t² + 16t
Therefore; the quadratic equation is 5t² - 16t + h =0
Answer:
As the earth is an oblate spheroid, its radius near the equator is more than its radius near poles. Since for a source mass, the acceleration due to gravity is inversely proportional to the square of the radius of the earth, it varies with latitude due to the shape of the earth.
Formula: g = GM/r2
Dimensional Formula: M0L1T-2
Values of g in SI: 9.806 ms-2
Explanation:
Please Mark me brainliest
Answer:
76.78 km/h To calculate the average velocity for the total trip, you need to first determine the total distance traveled and the total time taken. First, let's calculate the total distance traveled. The trip consists of 2 legs. The 1st leg is 280 km and the 2nd leg is 210 km. So the total distance is 280 km + 210 km = 490 km. Now you need to calculate the total time taken. For this problem, there are 3 intervals that need to be accounted for. The travel time for the 1st leg, the duration of the rest stop in the middle, and the travel time for the 2nd leg. The travel time for both legs is calculated by dividing the distance traveled by the average speed. So for the first leg we have 280 km / (88 km / h) = 3.181818 h The 2nd leg is 210 km / (75 km/h) = 2.8 h The rest stop in hours is 24 min / (60 min/h) = 0.4 h The total time is 3.181818 h + 2.8 h + 0.4 h = 6.381818 h The average velocity is the distance divided by the time, giving: 490 km / (6.381818 h) = 76.78 km/h
Explanation:
Hope this helps!!
Answer:
The angular speed of the reel is 11.33 rad/s
Explanation:
Given
The fisherman takes t = 8.4 s to wind distance x = 2.9 m into a circle radius of r = 3 cm = 0.03 m
Than the tangencial speed equals the change in the distance to the time
v =
= 
Knowing the tangencial velocity is proportional to the radius r and the angular velocity
v = r*w
w = 