"Accuracy" would be the best option from the list regarding the property of a measurement that is best estimated from the percent error, since the higher the error is the lower the accuracy.
Explanation:
When taking scientific measurements, it's vital to be each correct and precise. Accuracy represents however shut a mensuration involves its true price. This can be vital as a result of unhealthy instrumentality, poor processing or human error will result in inaccurate results that aren't terribly getting ready to the reality.
The letter that answers this question correctly is E .
Answer:
A. 4.47 m/s
Explanation:
As the ball oscillates, it mechanical energy, aka the total kinetic and elastics energy stays the same. For the ball to be at maximum speed, its elastic energy i 0 and vice versa. When the ball is at rest, its kinetic energy is 0 and its elastic energy is at maximum at 50 cm, or 0.5 m
1500 g = 1.5 kg






Answer:
a) a = 34.375 m / s², b) v_f = 550 m / s
Explanation:
This problem is the launch of projectiles, they tell us to ignore the effect of the friction force.
a) Let's start with the final part of the movement, which is carried out from t= 16 s with constant speed
v_f =
we substitute the values
v_f =
The initial part of the movement is carried out with acceleration
v_f = v₀ + a t
x₁ = x₀ + v₀ t + ½ a t²
the rocket starts from rest v₀ = 0 with an initial height x₀ = 0
x₁ = ½ a t²
v_f = a t
we substitute the values
x₁ = 1/2 a 16²
x₁ = 128 a
v_f = 16 a
let's write our system of equations
v_f =
x₁ = 128 a
v_f = 16 a
we substitute in the first equation
16 a =
16 4 a = 6600 - 128 a
a (64 + 128) = 6600
a = 6600/192
a = 34.375 m / s²
b) let's find the time to reach this height
x = ½ to t²
t² = 2y / a
t² = 2 5100 / 34.375
t² = 296.72
t = 17.2 s
We can see that for this time the acceleration is zero, so the rocket is in the constant velocity part
v_f = 16 a
v_f = 16 34.375
v_f = 550 m / s
Answer:
As with any wave the speed of sound depends on the medium in which it is propagating.
Explanation: