Answer:
1807
Explanation:
Robert Fulton (1765–1815) was an American engineer and inventor who is widely known for developing a commercially successful steamboat called Clermont. In 1807, that steamboat took passengers from New York City to Albany and back again, a round trip of 300 miles, in 62 hours.
 
        
             
        
        
        
A. people from the same location share the same personality type.
        
             
        
        
        
The complete question is: A student draws a picture of the products and reactants of a chemical reaction. What, if anything, is wrong with the drawing?
A) The drawing is wrong because there are more chemicals on the products side.
B) The drawing is correct because there are 12 compounds on each side of the arrow.
C) The drawing is wrong because there are different compounds on each side of the arrow.
D) The drawing is correct because there are 12 atoms of each type on each side of the arrow.
Answer:
Option D is correct
Explanation:
In the diagram attached below, it can be seen that there are 12 atoms of element which combine with 12 atoms of another element forming a compound. For the drawing to be correct, there should be 12 atoms of each type of element on both the reactants as well as product side, which is the case. There cannot be imbalance in the number of atoms of different elements on the two sides for a chemical reaction to occur. 
Hence, option D is correct. 
 
        
             
        
        
        
The minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s. The correct option is D.
<h3>What is mechanical energy?</h3>
The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.
M.E = KE +PE
A boy is trying to roll a bowling ball up a hill. The friction is ignored.  The ball must have to reach the top of the hill with a velocity. The acceleration due to gravity, g = 9.8 m/s²
The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.
M.E bottom of hill = M.E on top of hill
Kinetic energy + Potential energy = Kinetic energy  + Potential energy 
1/2 mu² + 0 =  0 + mgh 
At the top of hill, the velocity will become zero. So, final kinetic energy is zero.
Substituting the values, we have
1/2 x u² = 9.8 x 22.5
u = sqrt [2 x9.8 x 22.5 ]
u= 21 m/s
Thus, the minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s.
Learn more about mechanical energy.
brainly.com/question/13552918
#SPJ1
 
        
             
        
        
        
Simply draw the vector with the given coordinates.