Answer:
3.71 m/s
Explanation:
From the law of conservation of linear momentum, since we are neglecting minor energy losses due to friction then we can express it as
since all the potential energy is transformed to kinetic energy
Making v the subject of the formula then
and here m is the mass of the block, g is acceleration due to gravity, h is the height. Substituting 0.7 m for h and 9.81 for g then we obtain that
Answer:
active solar heating systems use solar energy to heat a fluid either liquid or air and then transfer the solar heat directly to the interior space or to a storage system for later use. If the solar system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat.
hope this helps : )
To solve this we assume
that the gas inside is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = 659.7 x 28 / 504.7
<span>V2 = 36.60 in^3</span>