D = 1/f, where D is the power in diopters and f is the focal length in meters.
D=1/20
<u>D=0.05</u>
Answer:
The movement of an object depends on the reference frame, so it is important to predicate it.
Explanation:
Answer:
x=4.06m
Explanation:
A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.
Vf=Vo+a.t (1)\\\\
{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\
X=Xo+ VoT+0.5at^{2} (3)\\
Where
Vf = final speed
Vo = Initial speed
T = time
A = acceleration
X = displacement
In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve
for this problem
Vf=7.6m/s
t=1.07
Vo=0
we can use the ecuation number one to find the acceleration
a=(Vf-Vo)/t
a=(7.6-0)/1.07=7.1m/s^2
then we can use the ecuation number 2 to find the distance
{Vf^{2}-Vo^2}/{2.a} =X
(7.6^2-0^2)/(2x7.1)=4.06m
<span>3.36x10^5 Pascals
The ideal gas law is
PV=nRT
where
P = Pressure
V = Volume
n = number of moles of gas particles
R = Ideal gas constant
T = Absolute temperature
Since n and R will remain constant, let's divide both sides of the equation by T, getting
PV=nRT
PV/T=nR
Since the initial value of PV/T will be equal to the final value of PV/T let's set them equal to each other with the equation
P1V1/T1 = P2V2/T2
where
P1, V1, T1 = Initial pressure, volume, temperature
P2, V2, T2 = Final pressure, volume, temperature
Now convert the temperatures to absolute temperature by adding 273.15 to both of them.
T1 = 27 + 273.15 = 300.15
T2 = 157 + 273.15 = 430.15
Substitute the known values into the equation
1.5E5*0.75/300.15 = P2*0.48/430.15
And solve for P2
1.5E5*0.75/300.15 = P2*0.48/430.15
430.15 * 1.5E5*0.75/300.15 = P2*0.48
64522500*0.75/300.15 = P2*0.48
48391875/300.15 = P2*0.48
161225.6372 = P2*0.48
161225.6372/0.48 = P2
335886.7441 = P2
Rounding to 3 significant figures gives 3.36x10^5 Pascals.
(technically, I should round to 2 significant figures for the result of 3.4x10^5 Pascals, but given the precision of the volumes, I suspect that the extra 0 in the initial pressure was accidentally omitted. It should have been 1.50e5 instead of 1.5e5).</span>