Answer:
42000N
Explanation:
First you calculate how much it would contract, and secondly you then calculate the force to stretch it by that amount.
1) linear thermal expansion coef brass 19e-6 /K
∆L = αL∆T = (19e-6)(1.85)(110) = 0.00387 meter or 3.87 mm
Second part involves linear elasticity.
for brass, young's modulus is 15e6 psi or 100 GPa
cross-sectional area of rod is π(0.008)² = 0.0002 m²
F = EA∆L/L
F = (100e9)(0.0002)(0.00387) / (1.85)
F = 42000 or 42 kN
1 is c
2 is false
3 false
4 i think is c ont 100% though
Answer:
135 m
Explanation:
Given:
vi = 12 m/s
vf = 18 m/s
t = 9s
Find: x
x = ½ (vf + vi) t
x = ½ (18 m/s + 12 m/s) (9 s)
x = 135 m
For this problem, we would be using the formula: Vf^2 = Vi^2 + 2ad
where:
Vf = 400m/s
Vi = 300m/s
a = ?
d = 4.0km
= 4000m
400^2 = 300^2 + 2a4000
a = [ 160000 - 90000 ] / 8000
a = 8.75m/s^2
rounding it off to 2 significant figures, will give us 8.8 m/s^2.