Answer: a boy jumping down
Answer:
true
Explanation:
if there is no light it's different from when there is
Answer:
In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of
A. 0° to the direction of propagation of wave
Explanation:
The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement
As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave
From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.
Answer:
The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Explanation:
Given that,
Wavelength = 400 nm
Energy 
We need to calculate the longest wavelength of light that is capable of ejecting electrons from that metal
Using formula of energy


Put the value into the formula



Hence, The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
<u>Answer </u>
A. that the initial gravitational potential energy of the masses transformed into kinetic energy of the paddles and then to thermal energy in the water
<u>Explanation</u>
James Joule allowed some water to fall from a height of 1 foot. the water would turn a paddle wheel at the bottom causing a temperature of water to raise.
The height form which the water fell, mass and the temperature of water was measured and used to calculate mechanical equivalent of heat.
From the choices given the best answer is A. that the initial gravitational potential energy of the masses transformed into kinetic energy of the paddles and then to thermal energy in the water.