1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vaieri [72.5K]
3 years ago
5

Can you make a paragraph about percent proportions?

Mathematics
1 answer:
Aleonysh [2.5K]3 years ago
3 0

Answer:

sorry thats your job

Step-by-step explanation:

You might be interested in
An article suggests that a poisson process can be used to represent the occurrence of structural loads over time. suppose the me
kirill115 [55]

Answer:

a) \lambda_1 = 2*2 = 4

And let X our random variable who represent the "occurrence of structural loads over time" we know that:

X(2) \sim Poi (4)

And the expected value is E(X) = \lambda =4

So we expect 4 number of loads in the 2 year period.

b) P(X(2) >6) = 1-P(X(2)\leq 6)= 1-[P(X(2) =0)+P(X(2) =1)+P(X(2) =2)+...+P(X(2) =6)]

P(X(2) >6) = 1- [e^{-4}+ \frac{e^{-4}4^1}{1!}+ \frac{e^{-4}4^2}{2!} +\frac{e^{-4}4^3}{3!} +\frac{e^{-4}4^4}{4!}+\frac{e^{-4}4^5}{5!}+\frac{e^{-4}4^6}{6!}]

And we got: P(X(2) >6) =1-0.889=0.111

c)  e^{-2t} \leq 2

We can apply natural log in both sides and we got:

-2t \leq ln(0.2)

If we multiply by -1 both sides of the inequality we have:

2t \geq -ln(0.2)

And if we divide both sides by 2 we got:

t \geq \frac{-ln(0.2)}{2}

t \geq 0.8047

And then we can conclude that the time period with any load would be 0.8047 years.

Step-by-step explanation:

Previous concepts

The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution". The probability density function is given by:

P(X=x)=\lambda e^{-\lambda x}

The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution"

Solution to the problem

Let X our random variable who represent the "occurrence of structural loads over time"

For this case we have the value for the mean given \mu = 0.5 and we can solve for the parameter \lambda like this:

\frac{1}{\lambda} = 0.5

\lambda =2

So then X(t) \sim Poi (\lambda t)

X follows a Poisson process

Part a

For this case since we are interested in the number of loads in a 2 year period the new rate would be given by:

\lambda_1 = 2*2 = 4

And let X our random variable who represent the "occurrence of structural loads over time" we know that:

X(2) \sim Poi (4)

And the expected value is E(X) = \lambda =4

So we expect 4 number of loads in the 2 year period.

Part b

For this case we want the following probability:

P(X(2) >6)

And we can use the complement rule like this

P(X(2) >6) = 1-P(X(2)\leq 6)= 1-[P(X(2) =0)+P(X(2) =1)+P(X(2) =2)+...+P(X(2) =6)]

And we can solve this like this using the masss function:

P(X(2) >6) = 1- [e^{-4}+ \frac{e^{-4}4^1}{1!}+ \frac{e^{-4}4^2}{2!} +\frac{e^{-4}4^3}{3!} +\frac{e^{-4}4^4}{4!}+\frac{e^{-4}4^5}{5!}+\frac{e^{-4}4^6}{6!}]

And we got: P(X(2) >6) =1-0.889=0.111

Part c

For this case we know that the arrival time follows an exponential distribution and let T the random variable:

T \sim Exp(\lambda=2)

The probability of no arrival during a period of duration t is given by:

f(T) = e^{-\lambda t}

And we want to find a value of t who satisfy this:

e^{-2t} \leq 2

We can apply natural log in both sides and we got:

-2t \leq ln(0.2)

If we multiply by -1 both sides of the inequality we have:

2t \geq -ln(0.2)

And if we divide both sides by 2 we got:

t \geq \frac{-ln(0.2)}{2}

t \geq 0.8047

And then we can conclude that the time period with any load would be 0.8047 years.

3 0
3 years ago
There are 20 boys in Fred's scout troop, and 12 of them are going on the 50-mile hike. What percent of the boys are going on the
anygoal [31]

Answer:

60%

Step-by-step explanation:

12/20=0.6

0.6=60%

4 0
3 years ago
Read 2 more answers
This is simple, but I don't have time to do this now, list the composite numbers from 2-50 please!
Kamila [148]
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50
6 0
3 years ago
SHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
yanalaym [24]

Answer:

WUT

Step-by-step explanation:

4 0
3 years ago
The sum of two numbers is $30$. the difference of twice the larger number and three times the smaller number is $5$. what is the
Shtirlitz [24]
X+y=30
2x-3y=5

y=30-x

2x-3(30-x)=30
2x-90+3x=30
5x=120
x=24

y=30-x
y=30-24
y=6

The positive difference between the two numbers is 18.
8 0
3 years ago
Other questions:
  • What multiplied by itself 3 times gives you -216 please answer asap!!!
    13·2 answers
  • Side length 6cm ,6cm, 4cm. How many different triangles can you make ?
    6·2 answers
  • What city is located at 39 n and 75 w
    14·1 answer
  • Solve.<br> 2a + 4 &gt; 12<br> .
    9·2 answers
  • Write using exponent (-2) (-2) (-2) (-2)
    7·2 answers
  • Answer 18 and 19 please!
    14·1 answer
  • Ms. Cruz has a tank with 11 fish. After buying two more, she has 2 less than triple the amount of fish Ms. Montesinos has. How m
    10·1 answer
  • Solve. Show all steps. <br> 1/8 x = 1/2
    15·2 answers
  • What is the surface area and volume ?
    11·1 answer
  • daniel watched a beetle and a spider on the sidewalk. the beetle crawled 1/2 of a yard and the spider crawled 1/6 of a yard how
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!