Cations from smallest to largest
Li⁺ ,Na⁺, K⁺ (from Periodic Table, the bigger number of period, the bigger size, of atom, so the bigger size of cation)
1) LiF smaller cation then KF
1,036 <span>853
</span><span>The lattice energy increases as cations get smaller, as shown by LiF and KF.
</span><span>I think this one should be correct answer, because the compared substances have also the same anion, and we can compare cations in them.
2) The same cation Li , so wrong statement.
3)</span>The same cation Na , so wrong statement.
4) NaCl smaller cation then KF
786 853
Answer:
Option A:
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Explanation:
The half reactions given are:
Zn(s) → Zn^(2+)(aq) + 2e^(-)
Cu^(2+) (aq) + 2e^(-) → Cu(s)
From the given half reactions, we can see that in the first one, Zn undergoes oxidation to produce Zn^(2+).
While in the second half reaction, Cu^(2+) is reduced to Cu.
Thus, for the overall reaction, we will add both half reactions to get;
Zn(s) + Cu^(2+) (aq) + 2e^(-) → Cu(s) + Zn^(2+)(aq) + 2e^(-)
2e^(-) will cancel out to give us;
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
The solubility of potassium chloride in at room temperature is approximately 34 g per 100 g of water. Therefore, the maximum amount that could be dissolved would be 34/100 ( 200) = 68 g of KCl. When more than this amount is added, excess potassium would not dissolve forming crystals in the solution.
Answer:
B) Electrons are located in the cloud-like areas around the nucleus.
Explanation:
The quantum mechanical model of the atom does not consider the path through which an electron travels. It rather estimates the probability of where electrons can be found at each energy level.
The region of maximum probability of where an electron is located is sometimes called an electron cloud or orbital. Each orbital of an atom and the electrons accomodated are described completely by a set of four quantum numbers.
I believe the answer is A. However, I would double check the formula.