Answer:
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Explanation:
The orbital period of a planet around a star can be expressed mathematically as;
T = 2π√(r^3)/(Gm)
Where;
r = radius of orbit
G = gravitational constant
m = mass of the star
Given;
Let R represent radius of earth orbit and r the radius of planet orbit,
Let M represent the mass of sun and m the mass of the star.
r = 4R
m = 16M
For earth;
Te = 2π√(R^3)/(GM)
For planet;
Tp = 2π√(r^3)/(Gm)
Substituting the given values;
Tp = 2π√((4R)^3)/(16GM) = 2π√(64R^3)/(16GM)
Tp = 2π√(4R^3)/(GM)
Tp = 2 × 2π√(R^3)/(GM)
So,
Tp/Te = (2 × 2π√(R^3)/(GM))/( 2π√(R^3)/(GM))
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
<span>The two foremost forces that were involved in the creation of the Cascade mountains are those of the tidal and tectonic forces. Tidal forces helped in eroding anything that was there previously, and the tectonic forces caused the eruption of these mountains to take place.</span>
Answer:
The difference in the decibel corresponses to a constant difference in the loudness perceived.
The refore the sound intensity from the orchestra is like 100 times that of the violin.
Explanation:
Asteroids are primarily found in an asteroid belt
technically usually the warmer object/substances particles move master which causes friction among the particles plus the kinetic energy being converted to thermal energy, so i would say the hand.