Answer:
158 L.
Explanation:
What is given?
Pressure (P) = 1 atm.
Temperature (T) = 112 °C + 273 = 385 K.
Mass of methane CH4 (g) = 80.0 g.
Molar mass of methane CH4 = 16 g/mol.
R constant = 0.0821 L*atm/mol*K.
What do we need? Volume (V).
Step-by-step solution:
To solve this problem, we have to use ideal gas law: the ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas. The formula is:

Where P is pressure, V is volume, n is the number of moles, R is the constant and T is temperature.
So, let's find the number of moles that are in 80.0 g of methane using its molar mass. This conversion is:

So, in this case, n=5.
Now, let's solve for 'V' and replace the given values in the ideal gas law equation:

The volume would be 158 L.
Salt makes the freezing point of water decrease, so it would freeze at a warmer temperature than regular water
Answer:
In the natural world, limiting factors like the availability of food, water, shelter and space can change animal and plant populations. Other limiting factors, like competition for resources, predation and disease can also impact populations. Other changes in limiting factors will cause a population to decrease.
Hydrogen ion, strictly, the nucleus of a hydrogen atom separated from its accompanying electron. The hydrogen nucleus is made up of a particle carrying a unit positive electric charge, called a proton. The isolated hydrogen ion, represented by the symbol H+, is therefore customarily used to represent a proton.
Abiotic are nonliving things. So just name 6 nonliving things in finding nemo