Answer:
Explanation:
A sound knowledge of specific heat capacity of the metals is required in this case.
The specific heat capacity of a metal is the quantity of heat required to the raise the temperature of a unit mass of it by 1°C.
It is related to quantity of heat using the expression below;
H = m c Δt
where m is the mass
c is the specific heat capacity
Δt is the temperature change
let us make the specific the subject of the expression;
c = 
we can see that there is an inverse relationship between specific heat and temperature change.
The specific heat capacity of a body is an intensive property that is unique to the metal.
The higher the specific heat capacity, the lower the amount of temperature change in it.
Let us find the specific heat capacity of the given metals;
Aluminium 0.897J/gK
Iron 0.412J/gK
Silver 0.24J/gK
After the heat is supplied,
Silver > Iron > Aluminium in terms of temperature change
The Nassau Din beat the the star has.
It may turn into a black hole if it has a high enough mass.
When you immerse an ionic compound<span> in </span>water<span>, the ions are attracted to the </span>water <span>molecules, each of which carries a polar charge. If the attraction between the ions and the </span>water <span>molecules </span>is<span> great enough to break the bonds holding the ions together, the compound </span>dissolves<span>. </span>
Answer:
Ionic bonding happens when an atom of an element gives one or more of its electrons to the other element's atom..it usually takes place between metal and non metal atoms...like in NaCl, Na gives its valence electron to chlorine and completes its own octet. Chlorine accepts the electron and completes its own octet too...but now both the atoms have an opposing charge and hence they attract each other to form an IONIC bond.
Ionic bonds are the strongest of the bonds...here complete transfer of electrons takes place unlike covalent bonds.
HOPE IT HELPED..
:)