Answer:
50.3mL of mercury are in 1.50lb
Explanation:
Punds are an unit of mass. To convert mass to volume we must use density (13.546g/mL). Now, As you can see, density is in grams but the mass of mercury is in pounds. That means we need first, to convert pounds to grams to use density and obtain volume of mercury.
<em>Mass mercury in grams:</em>
1.50lb * (1kg / 2.20lb) = 0.682kg = 682g of mercury.
<em>Volume of mercury:</em>
682g Mercury * (1mL / 13.546g) =
<h3>50.3mL of mercury are in 1.50lb</h3>
Answer:
70.15 cm³
Solution:
Data Given;
Mass = 55 g
Density = 0.784 g.cm⁻³
Required:
Volume = ?
Formula Used:
Density = Mass ÷ Volume
Solving for Volume,
Volume = Mass ÷ Density
Putting values,
Volume = 55 g ÷ 0.784 g.cm⁻³
Volume = 70.15 cm³
Answer:
Explanation:
Chemical reactions involve combining different substances. The chemical reaction produces a new substance with new and different physical and chemical properties. Matter is never destroyed or created in chemical reactions. The particles of one substance are rearranged to form a new substance.
Carbon carbon triple bonds
Answer:
ΔS = +541.3Jmol⁻¹K⁻¹
Explanation:
Given parameters:
Standard Entropy of Fe₂O₃ = 90Jmol⁻¹K⁻¹
Standard Entropy of C = 5.7Jmol⁻¹K⁻¹
Standard Entropy of Fe = 27.2Jmol⁻¹K⁻¹
Standard Entropy of CO = 198Jmol⁻¹K⁻¹
To find the entropy change of the reaction, we first write a balanced reaction equation:
Fe₂O₃ + 3C → 2Fe + 3CO
To calculate the entropy change of the reaction we simply use the equation below:
ΔS = ∑S
- ∑S
Therefore:
ΔS = [(2x27.2) + (3x198)] - [(90) + (3x5.7)] = 648.4 - 107.1
ΔS = +541.3Jmol⁻¹K⁻¹