The tangent to
through (1, 1, 1) must be perpendicular to the normal vectors to the surfaces
and
at that point.
Let
. Then
is the level curve
. Recall that the gradient vector is perpendicular to level curves; we have

so that the gradient of
at (1, 1, 1) is

For the surface
, we have

so that
. We can obtain a vector normal to
by taking the cross product of the partial derivatives of
, and evaluating that product for
:


Now take the cross product of the two normal vectors to
and
:

The direction of vector (24, 8, -8) is the direction of the tangent line to
at (1, 1, 1). We can capture all points on the line containing this vector by scaling it by
. Then adding (1, 1, 1) shifts this line to the point of tangency on
. So the tangent line has equation

Answer:The area of a square is equal to the length of one side squared. Since the square root of 36 is 6, the length of 1 side is 6.
Step-by-step explanation:
Answer:
0.93
Step-by-step explanation:
u have to add them all and divide by 12. then u add all of them but the outlier and divide by 11. then u subtract.
To check the decay rate, we need to check the variation in y-axis.
Since our interval is
![-2We need to evaluate both function at those limits.At x = -2, we have a value of 4 for both of them, at x = 0 we have 1 for the exponential function and 0 to the quadratic function. Let's call the exponential f(x), and the quadratic g(x).[tex]\begin{gathered} f(-2)=g(-2)=4 \\ f(0)=1 \\ g(0)=0 \end{gathered}](https://tex.z-dn.net/?f=-2We%20need%20to%20evaluate%20both%20function%20at%20those%20limits.%3Cp%3E%3C%2Fp%3E%3Cp%3EAt%20x%20%3D%20-2%2C%20we%20have%20a%20value%20of%204%20for%20both%20of%20them%2C%20at%20x%20%3D%200%20we%20have%201%20for%20the%20exponential%20function%20and%200%20to%20the%20quadratic%20function.%20Let%27s%20call%20the%20exponential%20f%28x%29%2C%20and%20the%20quadratic%20g%28x%29.%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20f%28-2%29%3Dg%28-2%29%3D4%20%5C%5C%20f%280%29%3D1%20%5C%5C%20g%280%29%3D0%20%5Cend%7Bgathered%7D)
To compare the decay rates we need to check the variation on the y-axis of both functions.

Now, we calculate their ratio to find how they compare:

This tell us that the exponential function decays at three-fourths the rate of the quadratic function.
And this is the fourth option.
Distance: (sqroot(x2-x1)^2 + (y2-y1)^2)
sqroot(1-3)^2 + (8-6)^2
sqroot(-2)^2 + (2)^2
sqroot(4) + 4
Square root of 8 = 2.82843
Round to nearest tenth
Solution: 2.8