Answer:
in which standard you are, i am typing your answer till please reply.
Explanation:
First, we need to determine the distance traveled by the car in the first 30 minutes,
.
Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance,
, in which the driver reduces the speed to 40km/hr is
.
Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by
.
.
Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

Therefore, the average speed of the car is 50 km/hr.
Answer:
2.8 m 7.4 m/s
Explanation:
write all the values then use the equations of motion to find the distance and speed. please see attached photo
Answer:
Explanation:
Balance point will be achieved as soon as the weight of the baby elephant creates torque equal to torque created by weight of woman about the pivot. torque by weight of woman
weight x distance from pivot
= 500x 5
= 2500 Nm
torque by weight of baby woman , d be distance of baby elephant from pivot at the time of balance
= 2500x d
for equilibrium
2500 d = 2500
d = 1 m
So elephant will have to walk up to 1 m close to pivot or middle point.
Answer:
The force that is exerted when a shopping cart is pushed is a type of push force, supplied by the muscles of the cart pusher's body.
The forces that causes a metal ball to move toward a magnet is a type of pull force that is as a result of the magnetic field forces.
Explanation:
Forces are divided into push forces that tends to accelerate a body away from the source of the force, and pull forces that accelerates the body towards the force source.
Examples of push forces includes pushing a cart, pushing a table, repulsion of two similar poles of a magnet etc. Examples of pull forces includes a attractive force between two dissimilar poles of a magnet, pulling a load by a rope, a dog pulling on a leash etc.