Answer:
The handrails must be approximately 10.63 meters long
Explanation:
The given parameters are;
The height of the bleachers, h = 8 m
The depth of the bleachers, d = 7 m
The length of the hand rails to go along the bleachers from bottom to top is given by Pythagoras' Theorem as follows;
The length of the hand rail = √(d² + h²)
∴ The length of the hand rail = √(7² + 8²) = √113 ≈ 10.63
In order for the handrails to go along the bleachers from top to bottom, they must be approximately 10.63 meters long.
Answer:
Equator
Explanation:
The equator is the line of latitude that separates the earth into the northern and southern hemisphere.Its magnitude is 0 degrees latitude. The equator and other lines of latitude are parallel to each other. The lines of longitude which is 0 degrees is known as the Greenwich meridian. The longitudinal lines however are not parallel as they converge at the poles.
Answer:
0.15625 grams
Explanation:
Half life: It is related to the decay of radioactive material. The duration in which half of the material will be degraded/decayed. That means after half life 50% of the radioactive material will be left. Here the half life is 28 years.
Initial quantity of the sample: 2.5 grams.
After 28 years, the leftover quantity = 1.25 grams
After 56 years, the leftover quantity = 0.625 grams
After 84 Years, the leftover quantity = 0.3125 grams
After 112 years, the leftover quantity = 0.15625 grams
Answer:
750 J
Explanation:
We have a student that pushes a 50N block across the floor for a distance of 15m. The question is asking how much work was done to move the block.
To solve this, we must know that we are looking for a certain thing called joules. And to get the answer, we must follow the formula of W = FS
F being the force and S being the distance.
W = FS
W = (50)(15)
W = 750
Therefore, 750 joules is our answer.
Answer:
Explanation:
Hello! To solve this problem we must be clear about the concept of energy conservation, and kinetic energy with the following sentence
The kinetic energy of the two cars (v = 1.2m / S) plus the kinetic energy of the third car (v = 3.5m / S) must be equal to the kinetic energy of the three cars together.
The kinetic energy is calculated by the following equation.

m= mass of the cars=26500kg
V=speed
E=kinetic energy
taking into account the above, the following equation is inferred
1= the cars are separated
2=
the cars are togheter
E1=E2

where
m= mass of each car
V1= 1.2m/s
Va=3.5,m/S

m= mass of each car
V=speed (in m/s) of the three coupled cars after the first couples with the other two
Solving



the speed of the three coupled cars after the first couples with the other two is 2.245m/s