Answer:
False
Explanation:
We have never made it to the mantle.
Answer: both hoops have the same kinetic energy at the bottom of the incline.
Explanation:
If we assume no work done by non conservative forces (like friction) , the total mechanical energy must be conserved.
K1 + U1 = K2 + U2
If both hoops start from rest, and we choose the bottom of the incline to be the the zero reference level for gravitational potential energy, then
K1 = 0 and U2 = 0
⇒ ΔK = ΔU = m g. h
If both inclines have the same height, and both hoops have the same mass m, the change in kinetic energy, must be the same for both hoops.
Pressure=hrg
pressure is great at the bottom because the weight lf water exerts pressure below the container due to the gravitational pull of the earth.
Answer:
a) FE = 0.764FG
b) a = 2.30 m/s^2
Explanation:
a) To compare the gravitational and electric force over the particle you calculate the following ratio:
(1)
FE: electric force
FG: gravitational force
q: charge of the particle = 1.6*10^-19 C
g: gravitational acceleration = 9.8 m/s^2
E: electric field = 103N/C
m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg
You replace the values of all parameters in the equation (1):

Then, the gravitational force is 0.764 times the electric force on the particle
b)
The acceleration of the particle is obtained by using the second Newton law:

you replace the values of all variables:

hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.