The formula for velocity vf = vi + at
First list your given information
2m/s Is your initial velocity (vi)
6m/s is you final velocity (vf)
2 seconds is your time (t)
Since you want the a for acceleration get a by itself
a = (vf-vi)/t
So a= (6-2)/2
a= 4/2
a=2
Now units
the units for acceleration are m/s
2m/s
Given constant acceleration, we can get the final position of an object in terms of both its initial velocity and its acceleration using one of the equations of motion.
The equation that we will use is:
Xf = Xi + Vi*t + (1/2)*a*t^2
where:
Xf is the final position of the object
Xi is the initial position of the object
Vi is the initial velocity of the object
t is the time
a is the constant given acceleration
The wavelength of the standing wave at fourth harmonic is; λ = 0.985 m and the frequency of the wave at the calculated wavelength is; f = 36.84 Hz
Given Conditions:
mass of string; m = 0.0133 kg
Force on the string; F = 8.89 N
Length of string; L = 1.97 m
1. To find the wavelength at the fourth normal node.
At the fourth harmonic, there will be 2 nodes.
Thus, the wavelength will be;
λ = L/2
λ = 1.97/2
λ = 0.985 m
2. To find the velocity of the wave from the formula;
v = √(F/(m/L)
Plugging in the relevant values gives;
v = √(8.89/(0.0133/1.97)
v = 36.2876 m/s
Now, formula for frequency here is;
f = v/λ
f = 36.2876/0.985
f = 36.84 Hz
Read more about Harmonics of standing waves at; brainly.com/question/10274257
#SPJ4
The ideal mechanical advantage will be 8.017. The ideal mechanical advantage value may be grater than the actual value of mechanical advantage.
<h3>What is mechanical advantage ?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system, it is used to obtained efficiency of forces in levers and pulley.
The ideal mechanical advantage is found as;
The ideal mechanical advantage will be 8.017.
To learn more about the mechanical advantage, refer to the link;
brainly.com/question/7638820
#SPJ1