Answer:
Quick maths
First you find the fafarick and the lalickc and the caprisum and the joinnt
It has three significant figure
Explanation:
https://educationalghana.news.blog/2021/08/09/geography-human-physical-and-practical-for-wassce-novdec-candidates/
26.54 m/s is the magnitude of its velocity just before it strikes the ground
h=100m,v=20m/s,g=9.8m/s
time it takes to reach the ground,
![[t=\sqrt2h/g],[=\sqrt2*100/9.8=4.51s]](https://tex.z-dn.net/?f=%5Bt%3D%5Csqrt2h%2Fg%5D%2C%5B%3D%5Csqrt2%2A100%2F9.8%3D4.51s%5D)
x= 120m
t= 4.52
v= x/t
v= 120/4.52
v= 26.54 m/s
The "speed at which an object changes its location" can be expressed using a vector number called velocity. Consider a person who moves swiftly while taking two steps forward and two steps back while remaining in one location. Velocity is a vector quantity. Therefore, velocity is cognizant of direction. The direction must be taken into account when determining an object's velocity. A speed of 55 mph is not enough information. The direction must be used to appropriately depict the item's velocity. Simply said, the direction of the velocity vector indicates the direction of motion of an object.
To know more about velocity visit : brainly.com/question/16379705
#SPJ9
Answer: 321 J
Explanation:
Given
Mass of the box 
Force applied is 
Displacement of the box is 
Velocity acquired by the box is 
acceleration associated with it is 

Work done by force is 

change in kinetic energy is 

According to work-energy theorem, work done by all the forces is equal to the change in the kinetic energy
![\Rightarrow W+W_f=\Delta K\quad [W_f=\text{Work done by friction}]\\\\\Rightarrow 375+W_f=54\\\Rightarrow W_f=-321\ J](https://tex.z-dn.net/?f=%5CRightarrow%20W%2BW_f%3D%5CDelta%20K%5Cquad%20%5BW_f%3D%5Ctext%7BWork%20done%20by%20friction%7D%5D%5C%5C%5C%5C%5CRightarrow%20375%2BW_f%3D54%5C%5C%5CRightarrow%20W_f%3D-321%5C%20J)
Therefore, the magnitude of work done by friction is 