Answer:
The work done to get you safely away from the test is 2.47 X 10⁴ J.
Explanation:
Given;
length of the rope, L = 70 ft
mass per unit length of the rope, μ = 2 lb/ft
your mass, W = 120 lbs
mass of the 70 ft rope = 2 lb/ft x 70 ft
= 140 lbs.
Total mass to be pulled to the helicopter, M = 120 lbs + 140 lbs
= 260 lbs
The work done is calculated from work-energy theorem as follows;
W = Mgh
where;
g is acceleration due gravity = 32.17 ft/s²
h is height the total mass is raised = length of the rope = 70 ft
W = 260 Lb x 32.17 ft/s² x 70 ft
W = 585494 lb.ft²/s²
1 lb.ft²/s² = 0.0421 J
W = 585494 lb.ft²/s² = 2.47 X 10⁴ J.
Therefore, the work done to get you safely away from the test is 2.47 X 10⁴ J.
I believe it’s called Alluvium! It’s where the river mouth is build up of gravel,sand,silt, and clay!!
Answer:
2π/[28 x (10^-3)]
Explanation:
Angular speed : ω=2π/T
T = 28ms = 28 x (10^-3) s
Angular speed = 2π/[28 x (10^-3)]
Answer: false
Explanation:
While kilograms are the unit used to measure body mass, the device used is a scale.
Hope it helps :)
To calculate the force between two negative charges, we use the formula which is given by the Coulomb`s Law as

Here,
and
are the charges on the pith balls, r is the separation between the charges and k is constant and its value is
.
Given
and
.
Substituting these values in above formula we get,

Thus, the repulsive force between two pith balls is
.