Microbiology studies organisms too small to be seen with the naked eye
Answer:
A transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length,that serves as the physical link between the mRNA and the amino acid sequence of proteins. Transfer RNA does this by carrying an amino acid to the protein synthetic machinery of a cell (ribosome) as directed by the complementary recognition of a 3-nucleotide sequence (codon) in a messenger RNA (mRNA) by a 3-nucleotide sequence (anticodon) of the tRNA. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code.
Each mRNA molecule is simultaneously translated by many ribosomes, all reading the mRNA from 5′ to 3′ and synthesizing the polypeptide from the N terminus to the C terminus. The complete mRNA/poly-ribosome structure is called a polysome.
tRNAs in eukaryotes
The tRNA molecules are transcribed by RNA polymerase III. Depending on the species, 40 to 60 types of tRNAs exist in the cytoplasm. Specific tRNAs bind to codons on the mRNA template and add the corresponding amino acid to the polypeptide chain. (More accurately, the growing polypeptide chain is added to each new amino acid bound in by a tRNA.)
The transfer RNAs (tRNAs) are structural RNA molecules. In eukaryotes, tRNA mole are transcribed from tRNA genes by RNA polymerase III. Depending on the species, 40 to 60 types of tRNAs exist in the cytoplasm. Serving as adaptors, specific tRNAs bind to sequences on the mRNA template and add the corresponding amino acid to the polypeptide chain. (More accurately, the growing polypeptide chain is added to each new amino acid brought in by a tRNA.) Therefore, tRNAs are the molecules that actually “translate” the language of RNA into the language of proteins.
Answer:
A. It allows plants to use nitrogen to grow.
Explanation:
However, plants can't directly use nitrogen to grow. The bacteria need to convert atmospheric nitrogen ( N2 gas) into a form that plants can use.
Nitrogen fixation is a symbiotic relationship between plants and microorganisms of nitrogen fixers, which in the process of symbiosis perform the binding of nitrogen, which enters the earth from the air (atmosphere).
It is a reduction process of converting the gaseous form of nitrogen from the air into the ammonia form that is available to plants.
Answer:
the answer is C) They increase the rate of the chemical reactions involved in digestion
Explanation:
The digestive functions of saliva include moistening food, and helping to create a food bolus, so it can be swallowed easily. Saliva contains the enzyme amylase that breaks some starches down into maltose and dextrin. Thus, digestion of food occurs within the mouth, even before food reaches the stomach.