The object<span> is moving with a decreasing acceleration. The </span>object<span> is moving with </span>a constant<span> velocity.</span>
Answer:
Explanation:
Given
Length of rope
Weight of rope
weight density
Work done to lift rope 33 m
Answer:
B. 6 cm
Explanation:
First, we calculate the spring constant of a single spring:
where,
k = spring constant of single spring = ?
F = Force Applied = 10 N
Δx = extension = 4 cm = 0.04 m
Therefore,
Now, the equivalent resistance of two springs connected in parallel, as shown in the diagram, will be:
For a load of 30 N, applying Hooke's Law:
Hence, the correct option is:
<u>B. 6 cm</u>
Answer:The sun, earth, and moon are held together by gravity, and they interact in lots of ways.
- The tides are another interaction in the sun-earth-moon system. The tides happen because the moon and sun pull on the oceans, causing them to rise and fall each day. The moon has a bigger effect than the sun because it is closer.
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.