Answer: 1.51 km
Explanation:
<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.
Or, ![\vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}}](https://tex.z-dn.net/?f=%5Cvec%7BF%7D%3Dk%20%5Cfrac%7BQ_%7B1%7D%20Q_%7B2%7D%7D%7Br%5E%7B2%7D%7D)
Where Q1 and Q2 are magnitude of two charges and r is distance between them:
<u>Given:</u>
Q1 = Charge near top of cloud = 48.8 C
Q2 = Charge near the bottom of cloud = -41.7 C
Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N
k = 8.99 x 109Nm^2/C^2
<u>So,</u>
![\begin{aligned}&7.98 \times 10^{6}=\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right) \frac{48.8 \mathrm{C} \times 41.7 \mathrm{C}}{\mathrm{r}^{2}} \\&r=\sqrt{\frac{1.8294 \times 10^{13}}{7.98 \times 10^{6}}}=1.514 \times 10^{3} \mathrm{~m}=1.51 \mathrm{~km}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%267.98%20%5Ctimes%2010%5E%7B6%7D%3D%5Cleft%288.99%20%5Ctimes%2010%5E%7B9%7D%20%5Cmathrm%7BNm%7D%5E%7B2%7D%20%2F%20%5Cmathrm%7BC%7D%5E%7B2%7D%5Cright%29%20%5Cfrac%7B48.8%20%5Cmathrm%7BC%7D%20%5Ctimes%2041.7%20%5Cmathrm%7BC%7D%7D%7B%5Cmathrm%7Br%7D%5E%7B2%7D%7D%20%5C%5C%26r%3D%5Csqrt%7B%5Cfrac%7B1.8294%20%5Ctimes%2010%5E%7B13%7D%7D%7B7.98%20%5Ctimes%2010%5E%7B6%7D%7D%7D%3D1.514%20%20%5Ctimes%2010%5E%7B3%7D%20%5Cmathrm%7B~m%7D%3D1.51%20%5Cmathrm%7B~km%7D%5Cend%7Baligned%7D)
Therefore, the separation between the two charges (r) = 1.51 km
Answer: Around 364 to 480
Answer:
Static stretching is the answer.
Explanation:
Static stretching is the most common form that greatly improves flexibility. However, static stretches does little to contract the muscles needed to generate powerful golf swings. Dynamic stretches help improve your range of motion while reducing muscle stiffness.
Answer:
a) ![P_m=1.78\ Pa](https://tex.z-dn.net/?f=P_m%3D1.78%5C%20Pa)
b) ![f=79.5775\ Hz](https://tex.z-dn.net/?f=f%3D79.5775%5C%20Hz)
c) ![\lambda=7.076\ m](https://tex.z-dn.net/?f=%5Clambda%3D7.076%5C%20m)
d) ![v=563.06\ m.s^{-1}](https://tex.z-dn.net/?f=v%3D563.06%5C%20m.s%5E%7B-1%7D)
Explanation:
<u>Given equation of pressure variation:</u>
![\Delta P= (1.78\ Pa)\ sin\ [(0.888\ m^{-1})x-(500\ s^{-1})t]](https://tex.z-dn.net/?f=%5CDelta%20P%3D%20%281.78%5C%20Pa%29%5C%20sin%5C%20%5B%280.888%5C%20m%5E%7B-1%7D%29x-%28500%5C%20s%5E%7B-1%7D%29t%5D)
We have the standard equation of periodic oscillations:
![\Delta P=P_m\ sin\ (kx-\omega.t)](https://tex.z-dn.net/?f=%5CDelta%20P%3DP_m%5C%20sin%5C%20%28kx-%5Comega.t%29)
<em>By comparing, we deduce:</em>
(a)
amplitude:
![P_m=1.78\ Pa](https://tex.z-dn.net/?f=P_m%3D1.78%5C%20Pa)
(b)
angular frequency:
![\omega=2\pi.f](https://tex.z-dn.net/?f=%5Comega%3D2%5Cpi.f)
![2\pi.f=500](https://tex.z-dn.net/?f=2%5Cpi.f%3D500)
∴Frequency of oscillations:
![f=\frac{500}{2\pi}](https://tex.z-dn.net/?f=f%3D%5Cfrac%7B500%7D%7B2%5Cpi%7D)
![f=79.5775\ Hz](https://tex.z-dn.net/?f=f%3D79.5775%5C%20Hz)
(c)
wavelength is given by:
![\lambda=\frac{2\pi}{k}](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B2%5Cpi%7D%7Bk%7D)
![\lambda=\frac{2\pi}{0.888}](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B2%5Cpi%7D%7B0.888%7D)
![\lambda=7.076\ m](https://tex.z-dn.net/?f=%5Clambda%3D7.076%5C%20m)
(d)
Speed of the wave is gives by:
![v=\frac{\omega}{k}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B%5Comega%7D%7Bk%7D)
![v=\frac{500}{0.888}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B500%7D%7B0.888%7D)
![v=563.06\ m.s^{-1}](https://tex.z-dn.net/?f=v%3D563.06%5C%20m.s%5E%7B-1%7D)