Answer:
Lines c and b, f and d (option b)
Step-by-step explanation:
To prove whether the lines satisfy the condition of being a transversal to another, let's prove one of the conditions wrong, and thus the answer -
Option 1:
Here lines a and b do not correspond to one another provided they are both transversals, thus don't act as transversals to one another, they simply intersect at a given point.
Option 2:
All conditions are met, lines c and b correspond with one another such that b is a transversal to both c and d. Lines f and d correspond with one another such that f is a transversal to both d and c.
Option 3:
Lines c and d are both not transversals, thus clearly don't act as transversals to one another.
Option 4:
Lines c and d are both not transversals, thus clearly don't act as transversals to one another.
306/6 is 51 is you add one to one side and take away the other the six numbers become: 46, 48, 50, 52, 54, 56 as you added one to one side substituting the other you took away from, therefore the smallest would be 46.
1 is the number which is the answer
Answer:
A: -41/9
Step-by-step explanation:
Substitute the point (4, -5) and slope -1/9 into the equation y = mx + b.
-5 = -1/9(4) + b
-5 = -4/9 + b
Solve for b:
b = -41/9
Our equation: y = -1/9(x) - 41/9