<span>To find the mass of 3.00 moles of magnesium chloride (MgCl2), first record the atomic mass of magnesium (Mg) and chloride (Cl), which are both listed on the periodic table as follows:
Mg=24 g/mole
Cl=38 g/mole
Now, double the Cl mass since there are 2 Cl moles in MgCl2 and then add it to the Mg mass like so:
(38 g/mole*2 moles)+24 g/mole=100 g/mole
Finally, to calculate the mass of 3.00 moles of MgCl2, convert the combined atomic mass to grams as follows:
3.00 moles * 100 g/mole = 300 g</span>
Answer: -
1 mol
Explanation: -
Number of moles of Sulphur S = 7
Number of moles of O2 = 9
The balanced chemical equation for the reaction is
2S (s)+3 O2 (g)→2SO3(g)
From the above reaction we can see that
3 mol of O2 react with 2 mol of S
9 mol of O2 will react with

= 6 mol of S
Unreacted S = 7 - = 1 mol.
If a reaction vessel initially contains 7 mol S and 9 mol O2
1 mole of s will be in the reaction vessel once the reactants have reacted as much as possible
Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
Answer:
1st answer: A. nitrogen
2nd answer: A. Sodium carbonate
Explanation: