Moles = mass/molar mass, so n(C2H6O)= 16.0 / (12+12+(1x6)+16)
=0.348 (to correct sig figs)
Answer:
According to the chart, the period and string length are not the same. Regardless of string length. The chart says that "period = seconds 10"
Explanation:
So for example in Trial 1. The period equaled 8.7, so in turn you would times 8.7 by 10 and get 87. Which is not equal to the string length. For they are also measured in two different measurements.
First, we need to find the atomic mass of

.
According to the periodic table:
The atomic mass of Carbon = C = 12.01
The atomic mass of Hydrogen = H = 1.008
The atomic mass of Oxygen = O = 16
As there are 6 Carbons, 12 Hydrogens and 6 Oxygens, therefore:
The
molar mass of

= 6 * 12.01 + 12 * 1.008 + 6 * 16
The
molar mass of

= 180.156
grams/moleNow that we have the molar mass of

, we can find the grams of glucose by using:
mass(of glucose in grams) = moles(of glucose given in moles) * molar mass(in grams/mole)
Therefore,
mass(of glucose in grams) = 2.47 * 180.156
mass(of glucose in grams = 444.99 grams
Ans: Mass of glucose in grams in 2.47 moles =
444.99 grams
-i
The dependent variable is the variable that changes based on the independent variable (the manipulated variable).
Answer:
Replacing the powdered lead oxide with large crystals
Explanation:
The large crystals have less surface area exposed to the other reagents than the powdered lead oxide. High surface area leads to a high rate of reaction thus the products are formed faster, while a low surface area leads to a lower rate of reaction since the reagent is less exposed to the other reagents.