Answer:
An equation for each situation, in terms of x
A = 35 + 3x
B = 80 + 2x
The interval of miles driven x, for which Company A is cheaper than Company B is 0 to 44.9 miles.
Step-by-step explanation:
Let A represent the amount Company A would charge if Piper drives x miles
Let B represent the amount Company B would charge if Piper drives x miles.
Company A charges an initial fee of $35 for the rental plus $3 per mile driven.
A= $35 + $3 × x
A = 35 + 3x
Company B charges an initial fee of $80 for the rental plus $2 per mile driven.
B = $80 + $2 × x
B = 80 + 2x
The interval of miles driven x, for which Company A is cheaper than Company B.
= A < B
35 + 3x < 80 + 2x
3x - 2x < 80 - 35
x < 45 miles
That is: any number of miles driven below 45 miles makes Company A cheaper than Company B
The interval of miles driven x, for which Company A is cheaper than Company B is 0 to 44.9 miles.
Answer:
$70
Step-by-step explanation:
1 - ⅙ - ¼ = (12 - 2 - 3)/12 = 7/12
7/12 × 480 = 280
280/4 = 70
A+b > c as in the side lengths
Answer:
1. x2 - 9 > 0
x^2-3^2>0
(x+3)(x-3)>0
(x+3)>0 and (x-3)>0
x>-3 and x>3
2. x2 - 8x + 12 > 0
x^2 - 8x +12>0
x^2 -2x -6x +12 >0 (-8x is replaced by (-2x) + (-6x) )
x(x-2) -6(x-2) >0
(x-6)(x-2)>0
(x-6)>0 and (x-2)>0
x>6 and x>2
3. -x2 - 12x - 32 > 0
-x^2 -12x -32 >0
x^2 +12x +32 <0
x^2 +4x +8x +32<0
x(x+4) +8(x+4)<0
(x+8)(x+4)<0
(x+8)<0 and (x+4)<0
x<-8 and x<-4
4. x2 + 3x - 20 >= 3x + 5
x^2 +3x -20 >= 3x +5
x^2 +3x -20 -3x >= 3x +5 -3x
x^2 -20 >= 5
x^2 -20 +20 >= 5 +20
x^2 >=25
x^2-25 >=0
(x-5)(x+5)>=0
(x-5)>=0 and (x+5)>=0
x>=5 and x>=-5
Answer:
Find the ratio of minutes to miles, 4:1. Multiply 7.5 by 4.
Step-by-step explanation:
Given
Minutes: 10 || 16 || ? || 48
-----Miles: 2.5 || 4 || 7.5 || 12
Required
Which statements solve for the missing value?
First, we need to calculate the ratio of minutes to mile

When minutes = 16; mile = 4
So, we have:


Next, we multiply the ratio by 7.5



<em>Hence, option B answers the question.</em>